
  

  

Abstract— The problem of reconfiguration in faulty systems 
containing non-smooth nonlinearities is considered. To solve the 
problem, the control law is constructed providing insensitive to 
effects of faults. The suggested solution is based on so-called 
logic-dynamic approach. The main feature of this approach is 
that it allows to use well known linear methods for systems with 
non-smooth nonlinearities. Existing conditions are established 
and the expression for new control is given. The example 
illustrates the theoretical results. 

Keywords: nonlinear systems, faults, reconfiguration, logic-
dynamic approach. 

I. INTRODUCTION 

In this paper, the problem of fault tolerant control (FTC) in 
technical systems of critical purposes is investigated. Two main 
approaches to the FTC are known. The first one is fault 
accommodation while the second one involves system 
reconfiguration [1, 8, 10]. 

The paper concentrates on the problem of reconfiguration 
in systems described by nonlinear equations. It is assumed that 
the faults are detected and isolated by known methods in the 
system. In our approach, we interpret faults as unknown 
disturbances. Then the disturbance decoupling problem (DDP) 
solution is used for solving the plant reconfiguration problem 
(PRP). 

Two solutions of PRP have been proposed. The first one 
uses the methods of adaptive control and assumes that faults 
are detected and estimated and then the control law 
accommodation is designed [1, 2, 10]. The second approach 
determines a control law such that some function of the system 
output is full decoupled with respect to effects of faults [6]. 
Unlike the first approach, the fault estimation is not required in 
the second approach.  

The problem of reconfiguration in nonlinear systems 
containing non-smooth functions was considered in [4] and 
then in [8, 11, 12]. The peculiarity of [4] is that the known 
DDP solution is used for solving the PRP. Besides, a solution is 
based on so-called algebra of functions and demands 
sophisticated analytical computations. In contrast to [4], the 
papers [11, 12] use so-called logic-dynamic approach 
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developed in [13]. The aim of our paper is to find a solution of 
the PRP by the methods of linear algebra.  

The rest of the paper is organized as follows. In Section II, 
the basic models and problem statement are formulated. The 
disturbance decoupling problem is solved in Section III. 
Section IV considers solution of the PRP based on the DDP 
solution. Illustrative example is given in Section V. Section VI 
concludes the paper. 

II. BASIC MODELS AND PROBLEM STATEMENT 

Consider dynamic system  
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nRx ∈  is the state vector, mRu ∈  is the control vector, 
lRy ∈  is the vectors of outputs; F and G are matrices 

describing the linear dynamic part of the system; H, C, and D 
are  matrices, pRtd ∈)(  is the function presenting faults: if 
faults are absent, 0)( =td , when a fault occurs, )(td  becomes 
an unknown function of time; the functions 1ϕ , ..., qϕ  may be 

non-smooth, 1A , ..., qA  are row matrices. The model (1) can 
be obtained from general nonlinear system 

))(()(      )),(),(),(()1( txhtytdtutxftx ==+  

by special change of coordinates [13]. Specifically, the part of 
system, presented by constant matrices F and G, is separated 
from the nonlinear term which is described by nonlinear 
functions     1ϕ , ..., qϕ  and matrices C, 1A , ..., qA . 

It is assumed that the faults are detected and isolated by 
methods suggested in [1, 5]. When a fault arises, )(td  is 
considered as unknown function of time therefore the control 
problems for system (1) cannot be solved immediately. To deal 
with the difficulty, we use a feedback described by 
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where the vector *u  is a new control, 00
nRx ∈ , nn ≤0 , is the 

vector of state of the compensator, 0F , 0G , 0J , 0C , 01A , ..., 

qA0  are matrices to be determined, ⎟
⎠
⎞

⎜
⎝
⎛= y

xz 0
0 . For simplicity, 

the notations +
0x  is used for )1(0 +tx . 

The goal of decoupling is removing the influence of the 
unknown function )(td  on a subsystem of maximal dimension 
of the closed-loop system (1), (2). Specifically, we are looking 
for system (2) and the subsystem *S  of system (1), (2) of the 
dimension *n  
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which is independent of the unknown function )(td , where 
nn ≤*  is as large as possible and 

)()(* txtx Φ=                                    (4) 

for some matrix Φ . Since (3) does not depend on the unknown 
function )(td , one may find the control for subsystem (3) and 
solve the PRP. Note that since nn ≤* , the fault effects can be 
eliminated only for some function of the state vector )(tx  
which can be found. 

Similar to [4], in the present paper the faults are interpreted 
as disturbances and the DDP solution of is used for solving the 
PRP. The disturbance decoupling problem under the 
compensator (2) is stated as follows [3, 4]. System (1) is 
considered together with the output-to-be-controlled LRy ∈* , 

)(** xhy = , where *h  is known function. The DDP is design 
of system (2) in such a way that the variable )(* ty , for 0≥t , 
of system (1), (2) is not influenced by )(td . 

To solve the DDP [3, 4], one finds first a vector function 
0α  with maximal number of independent components such 

that the function )))(),(),(((0 tdtutxfα  is independent of the 

unknown function )(td . It can be shown that xDx 00 )( =α , 

where 0D  is the matrix of maximal rank such that 00 =DD . 

Recall briefly main definitions and results from [4]. 

One says that the function α  is ),( fh -invariant (f-
invariant) if ),),(),(()),,(( * duxhxfduxf α=α  ( )),,(( duxfα  

),),((* duxf α= ) where *f  is some function. The function χ  
is a controlled invariant if a regular static state feedback 

),( *uxgu ′=  exists such that the function χ  in system (1), (2) 
is f-invariant. 

Theorem 1 [4]. The output-to-be-controlled )(** xhy =  
may be decoupled from the disturbance by compensator (2) if 

and only if ),( fh -invariant function α  and a controlled 
invariant function χ  exist satisfying the condition 

*
0 h≤χ≤α≤α ,                               (5) 

where γ≤β  signifies that there exits the function δ  satisfying 
the equality )())(( xx γ=βδ  for all x [3, 10]. 

III. DDP SOLUTION 

A.  Preliminaries 
Initially we assume that *h  is the known function and 

design the functions α  and χ . Then these results are used for 
solving the PRP. To simplify a solution, we assume that the 
functions α  and χ  are linear ones. This allows using the linear 
algebra methods for solving the problem under consideration 
for system (1). 

Initially we consider the case when 1=q  and construct the 
system 0S . To construct this system, so-called logic-dynamic 
approach (LDA) is used which has the following steps [13]. 

Step 1. Remove the nonlinear part from the initial nonlinear 
system (1). 

Step 2. Solve the considered problem for the linear part, 
obtained in Step 2, under some linear restriction. Such a 
restriction is used to know whether or not the nonlinear term 
can be constructed based on the solution obtained for the linear 
system.   

Step 3. Supplement the obtained in Step 2 solution by the 
transformed nonlinear term. 

In [4], the function α  is found as a function having 
maximal number of components and satisfying the condition 

α≤α0 . Since it is found as a linear function, one assumes that 

)())(()(0 txtxtx Φ=α=                        (6) 

for some matrix Φ  of maximal rank satisfying the following 
conditions [11, 13]: 

.0     ,     , 000 =ΦΦ=+Φ=Φ DGGHJFF            (7) 

One can show that the relations CΦ=0C  and 

⎟
⎠
⎞⎜

⎝
⎛ Φ= HAA 0 ,                                  (8) 

corresponding to the nonlinear term, hold [11, 13]. 

The last relation is the additional restriction on the matrix 
Φ  mentioned in Step 2. It is true if and only if rows of the 
matrix A linearly depend on the rows of the matrices Φ  and H. 
Clearly, it is equivalent to the condition 

)      ()   ( TTTTT AHrankHrank Φ=Φ .            (9) 
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If 1>q , the matrix A in (8) and (9) should be substituted for 

iA , qi ,...,1= . 

It is assumed that the matrices 0F  and 0H  are found as 
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Then the equation HJFF 00 +Φ=Φ  can be replaced by k 
equations: 

HJF iii 01 +Φ=Φ + ,   1,...,1 −= ki ,   HJF kk 0=Φ .   (10) 

The i-th rows of the matrices Φ  and 0J  are denoted as iΦ  
and iJ0  are, respectively, ki ,...,1= , k is the dimension of 0x . 

B. Full Decoupling for Linear System 
There exist two ways to find the matrix Φ  of maximal rank 

satisfying the condition 0=ΦD . 

1) The first way: It was shown in [13] that (10) with the 
condition 0=ΦD  can be transformed into the equation 
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002011 =−−−Φ kk
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where 
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To achieve the maximal dimension of the system 0S , take 
pnk −=:  and check the inequality 

nlkHWrank kk +<)   ( )()( .                       (12) 

When (12) holds, there exists the row )   ...      ( 0011 kJJ −−Φ  
such that (11) can be solved. Then one finds the matrix Φ  
from (10) and computes GG Φ=0 . Thus, the linear part of the 
system 0S  decoupled from the unknown function )(td  has 
been constructed. 

If (12) does not hold, take 1: −= kk  and continue to check 
(12). If (12) does not hold for all k, then the system 0S , 
decoupled from )(td , does not exist and the PRP has no 
solution. Because the dimension k is maximal, the function 

xx Φ=α )(  is the best choice for α  in (5). 

2) The second way: Because the matrix 0D  has full rank 
such that 00 =DD  and 0=ΦD , then 0QD=Φ  for some 
matrix Q. Rewrite the equation HJFF 00 +Φ=Φ  with 

0QD=Φ  as 

0)   )(   ))((   Q   ( TT0T0
00 =−− THDFDJFQ .     (13) 

Let )     ( CBA  be a solution of (13), then the equality 
AFB 0−=  is true. Considering this equality, we remove from 

the matrix )     ( CBA  all rows which the corresponding rows of 
B do not depend on the matrix A rows for. Denote the final 
matrix by )     ( 000 CBA . Clearly from (13) that 0

0  CJ −=  

and 00DA=Φ ; the matrix 0F  is found from the algebraic 
equation AFB 0−= . 

The first way is good when 6≤n ; if 6>n , the second one 
is preferable because the matrix )   ( )()( kk HV  has high 
dimension in this case. 

C. Construction of the Dynamic Part of Compensator 
Note that if (9) is satisfied for the matrix Φ  found for the 

linear part, then the problem to construct the system 0S  with 
nonlinearities reduces to that for linear system. When (9) is not 
satisfied, find all solutions of (11) for maximal k satisfying the 
condition (12) and present them as 
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where the number of all solutions is denoted by N. 

Theorem 2 [11]. Consider the matrices )1(Φ , ..., )(NΦ  
calculated based on (10) and (11). Then the linear combination 
of expressions (14) with coefficients 1v , ..., Nv  gives the 

matrix )()1(
1 ... N

Nvv Φ++Φ=Φ  which produces some 

solution of our problem for linear system. 

Let the value k is maximal as possible, and all solutions of 
(11) are found in the form (14). To find the vector 

)  ...  ( 1 Nvvv = , represent (8) as 

HAAA 0201 +Φ= ,                            (15) 

where )   ( 02010 AAA = , )   ...   ( 101 kaaA = . Denote 
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and present (15) in the form 

HAAA k 02
TTT

101 ))()(( +ΦΦ= ΣΣ L .            (16) 

Analogously to (9), equation (16) has a solution if 

)      )(()   )(( TTTTT AHrankHrank ΣΣ Φ=Φ .       (17) 

Assume that (17) holds and consider firstly the case when 
the matrix A has only one row. Here, (16) can be rewritten as 

HAvavaA k 021 )   ...   ( += , or as 
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HAAA v 02+Φ= Σ ,                           (18) 

where vA  is assumed to be unknown matrix. Solve (18) and 
find the matrices vA  and 02A . If vA  can be rewritten in the 
form )   ...   ( 1 vava k  for some coefficients kaa  ..., ,1  and the 
vector )  ...  ( 1 Nvvv = , then stop, the matrices 01A  and 02A  
and the vector )  ...  ( 1 Nvvv =  have been obtained. Then one 
finds the rows of 0J  and Φ  by 

)(
010
i
j

N
i ij JvJ ∑ == ,     )(

1
i
j

N
i ij v Φ=Φ ∑ = ,    kj ,...,1= ; 

GG Φ=0 , CC Φ=0 . As a result, a dynamic part of the 
compensator (2) has been built. 

If (17) is not true or the matrix vA  cannot be rewritten in 
the form )   ...   ( 1 vava k , one has to decrease the dimension k 
and repeat the described procedure. 

If the number of the matrix A rows is more than one, one 
solves (18) for each row with coefficients kaa  ..., ,1  peculiar to 
the considered row; note that the vector v is identical for all 
rows. 

D.  Design the Function χ  

Recall some results from [4]. Let T
*1** )   ...   ( Lhhh = ; let 

ir  and iw  be relative degrees of the output )(** xhy ii =  with 
respect to )(tu  and )(td , respectively. Besides, denote 

))((:))(()( 1,*** txhtxhty iii == ,…, ))((:)1( ,** txhrty iriii =−+ , 
Li ,...,1= . When xHxh ** )( = , the last relations reduce as 

follows. 

Introduce the matrix *C : if 0),( ≠jiC  and the function 

jϕ  contains components of the control vector u, set 
1),(* =jiC , otherwise 0),(* =jiC . 

Denote by ir ′  minimal integer p such that 01
* ≠− GFH p
i , 

by iw  minimal integer p such that 01
* ≠− DFH p
i , and by 

*ir  minimal integer p such that 0*1
* ≠− CFH p
i , Li ,...,1= . 

Clearly, ir ′  and *ir  are the relative degrees of the output iy*  
with respect to )(tu  corresponding to the linear and nonlinear 
parts of system (1), respectively. Set *),min(: iii rrr ′= , 

Li ,,1K= . 

One makes the following assumptions. 

Assumption 1. ii rw >  and ii rw ′>  for all Li ,,1K= , 
otherwise the DDP is not solved. 

From the definition of ir  and Assumption 1, =+ )(* ii rty  

))(),((ˆ tutxfi  for some function if̂ . Clearly, the function 

))(),((ˆ tutxfi  is independent of )(td  due to Assumption 1. 

Assume that mL ≤  is true and set =:),(ˆ uxf  
T

1 )),(ˆ),...,,(ˆ( uxfuxf L .  

Vector ),...,( 1 Lrr  is said to be vector relative degree of the 
output-to-be-controlled )(* ty  if the equality 

Luuxfrank =∂∂ )/),(ˆ(  holds everywhere except perhaps on a 
set of measure zero. 

Assumption A2. The output-to-be-controlled )(* ty  has a 
vector relative degree ),...,( 1 Lrr . 

Theorem 3 [4]. Under Assumptions 1 and 2, the controlled 
invariant function χ  satisfying the inequality *h≤χ  and 
having minimal number of components, can be computed by 

TT0
*

T0
1* ))(   ...   )((: Lhh=χ ,                      (19) 

where )   ...   ( ,*1,*
0
* iriii hhh = , Li ,...,1= . 

We would like to find the function χ  as a linear one, so the 
additional assumption is stated. 

Assumption 3. ii rr ′=  for all Li ,...,1= , i.e. all relative 
degrees correspond to the linear part of system (1). 

Set xHy 1*1* = , …, xFHy rr 1
1*1*

11 −= ; clearly, the output  
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depends on control. Here ),()( 1
1*1 1 uxFHx r Ψ=ψ − ; note that 

the function )(1 xψ  is independent of u  due to Assumption 3. 

Clearly, the expression )(1
1

1*1* 11 xGuFHxFH rr ψ++ −  is 

similar to the function ),(1̂ uxf . 

Consider the set of equations 
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Introduce the matrices 
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Assume for simplicity that LHrank =)ˆ( * ; clearly, this 
condition is equivalent to Assumption 2. In this case (20) can 
be solved for the control u. 

Set TT)(
*

T)1(
** ))(   ...   )(( LHH=Φ . Clearly, the matrix 

*Φ  is similar to the function χ  defined by (19). As a result, 
this matrix can be considered as controlled invariant for the 
linear part of the closed-loop system (1), (2). If the condition 
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)()( TT
** Arankrank Φ=Φ                       (22) 

is true then the nonlinear term of the system *S  can be 
constructed based on the linear part. Analogue of the condition 

χ≤α  is the equality 

)()( TT
* ΦΦ=Φ rankrank .                      (23) 

If (22) and (23) are true, the PRP is solvable; otherwise a 
solution does not exist. Assuming that (22) and (23) are true, 
we have Φ=Φ Q*  for some matrix Q. 

Solving (20) for the control, one obtains the expression in 
the form ),( *uxgu ′= , i.e. a static state form of the feedback. 
Since Φ=Φ Q*  and the matrix Φ  is similar to the ),( fh -
invariant function, then the state x in ),( *uxgu ′=  can be 
expressed in the terms of the state xx Φ=0  and the vector y. 
As a result, a static part of the compensator (2) takes the form 

),,( *0 uyxgu =  for some function g. 

The matrix *Φ  is used to construct the system *S : set 

xx ** Φ= , then ),(***** uxGuFxxx ΨΦ+Φ+Φ=Φ= ++ . 
Since *Φ  is controlled invariant for the linear part of the 
closed-loop system and (23) is valid, the right-hand side of the 
last expression can be expressed via the state *x  and the new 
input *u  i.e. one obtains the expressions in the form (3). 

If the condition ii rr ′=  is not true for some i, then the 
function iψ  in the left-hand sides in (20) depends on the 
control u . In this case the matrix *Φ  remains the analogue of 
χ , the expressions for g ′  and g become more complex [12]. 

IV. SOLUTION OF THE PRP 

Here, we use the DDP solution for solving the PRP. Note 
that when the PRP is stated, the matrix *H  is a design object 
unlike the DDP where *H  is given. So, we find a matrix *H  
of maximal rank which is independent of )(td  using the 
compensator (2). 

We take Φ=*H  since this is the best choice for *H  due 
to Theorem 1 and find out whether or not the DDP can be 
solved for Φ=*H . Due to Theorem 1, a controlled invariant 
function χ  exist such that *h≤χ≤α . Taking into account our 
analogues, one has Φ=*H  and the only possible choice for 

*Φ  is Φ=Φ :* . Hence, we have to check whether Φ  is 
controlled invariant. If yes, the best solution of the PRP has 
been obtained where the system *S  has maximal dimension. 
Otherwise the PRP has a solution where the system *S  is of 
smaller dimension. The matrix *Φ  of such a solution is 
satisfied the equality Φ=Φ Q* . In this case ** : Φ=H . 

An algorithm computing the feedback that solves the PRP 
is given below. 

Algorithm. 

Step 1. Design the dynamic part of the feedback (2) based 
on Section III and take Φ=:*H . Assume that the condition (9) 
is satisfied. 

Step 2. Find the relative degrees ir ′ , *ir , and iw  of 
xHy ii ** = . Assuming that ii rr ′= , check Assumption 1; if it 

does not hold, remove the i-th row from the matrix *H , 
Li ,...,1= . Denote the final matrix by *H  as well. 

Step 3. Compute the matrix )(
*

iH  from (21) and check the 
condition  

))()(()( T
*

T)(
* Φ=Φ iHrankrank .               (24) 

If it is not true, then remove the i-th row from the matrix *H , 
Li ,...,1= . Denote the final matrix by *H  as well. 

Step 4. Compute the matrix *Φ ; clearly, the condition (24) 
is satisfied. Check (23); if it is not true, then stop, the PRP is 
not solved. 

Step 5. Construct the matrix *Ĥ  from (21) and check the 
condition LHrank =)ˆ( * . If it is satisfied, go to Step 7, 
otherwise to Step 6. 

Step 6. If LMHrank <=)ˆ( * , then find LM ×  matrix P 
satisfying the condition MHPrank =)ˆ( * . The matrix P 
collects the linearly independent rows of *Ĥ . Set **

ˆ:ˆ HPH = . 
Step 7. Design the static part of (2) by solving (20) for u in 

the form ),( *uxgu ′=  and next in the form ),,( *0 uyxgu =  
(when LM < , the symbol L in (20) is substituted for M). 

Step 8. Set ** : Φ=H , xx ** : Φ= , construct the system 

),(***** uxGuFxxx ΨΦ+Φ+Φ=Φ= ++ , and transform it 
into the form (3). Take *** xxHy == . 

Since the matrix P in Step 6 can be chosen by several ways, 
it should be chosen in such a way that the relative degree of 

*** xxHy ==  is maximal. 

V. EXAMPLE 

Consider the system described by the equations 

.   ,
     ,                     ,
     ,                                ,

,)sign(      ,

5211
21

2
262435

1544433

1632134631

xyxy
uxxxdxxx
uxxxxxx

uxxxduxxxx

==
++=++=
++=−=

++=++++=

++

++

++

 

As recommended in [11], the initial model is corrected by 
entering several formal terms as follows: the term 33 xx −  in 
the second equation, 4343 xxxx −−+  in the third, and 

22 xx −  in the fifth. The resulting matrices and nonlinearities 
are as follows: 
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2
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43432
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xxux
xxxxux
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−=ϕ
        

).0   0   0   0   1   0(
),0   0   1   0   0   0(
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=
=
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A
A
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Compute 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

100000
001000
000100
000010

0D . 

It can be shown that 0D=Φ . The condition (9) is satisfied 
therefore the nonlinear term of (2) can be constructed based on 
the matrix Φ . Clearly, 0* =C , Φ=*H , 4=L . 

Next, by Step 2 of Algorithm find 1431 =′=′=′ rrr , 22 =′r , 
∞=== *...* 41 rr , 321 == ww , and 243 == ww ; clearly, 

Assumptions 1 and 3 are satisfied. 

Clearly, the condition (24) is satisfied for all i. It can be 
shown that (22) is satisfied as well therefore the nonlinear term 
of the system *S  can be constructed based on the linear part. 
Compute  
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L . 

Since 42)ˆ( * <=Hrank , Assumption 2 is not satisfied. By 
Step 6, find the matrices  

⎟
⎠
⎞⎜

⎝
⎛= 1000

0100P ,     ⎟
⎠
⎞⎜

⎝
⎛== 010

001ˆ:ˆ
** HPH . 

Clearly, equations (20) with *Ĥ  are solvable for 21,uu . Set 

.:    ,: 21
2
22*541* 1 uxxuuxxu ++=++=  Since xx Φ=:0 , set 

T
6432

T
04030201 ),,,(:),,,( xxxxxxxx =  and find the system 

0S : 

.               ,
,     ,)sign(

21
2
0204120303

0302021040201

uyxxuyxx
xxxuxxx

++=++=
−=++=

++

++
 

In Step 7, we replace ),,,( 6432 xxxx  by ),,,( 04030201 xxxx  
and obtain  

12031* : uyxu ++= ,     21
2
022* : uyxu ++= . 

As a result, the static part of the compensator (2) is given by 

.      ,      , 3*31
2
022*22031*1 uuyxuuyxuu =−−=−−=  

To construct the system *S , set ** : Φ=H , T
4*3*2*1* ),,,( xxxx  

T
6432 ),,,(: xxxx=  and obtain its description in Step 8: 

).()1(
       ),()1(

),()()1(
),(/))()(()())(sign()1(

2*4*

1*3*

3*2*2*

4*1*4*2*1* 3*

tutx
tutx

txtxtx
txtxtutxtxtx

=+
=+

−=+
−++=+

 

VI. CONCLUSION 
The paper deals with the plant reconfiguration problem. 

The advantage of the LDA which is used in the paper to solve 
this problem is that the system can be described by a model 
with non-smooth nonlinearities. Besides, this approach can be 
used for the continuous-time systems as well advantageously as 
for the discrete-time ones. 
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